9/6/2023, 9:16:00 PM
数値微分と結果が一致することを確認できた
コサイン類似度: \( cos(X, Y) = \frac{\sum_{i=1}^{N}(X_i Y_i)}{\sqrt{\sum_{i=1}^{N}(X_i^2)} \sqrt{\sum_{i=1}^{N}(Y_i^2)}} \)
目標とする類似度: \(t\)
コサイン類似度からなる損失関数: \( L(X, Y, t) = (t- cos(X, Y))^2 \)
より
コサイン類似度からなる損失関数を\(X_i\)について偏微分した式
$$ \frac{\partial L(X, Y, t)}{\partial X_i} = \frac{\partial(t-cos(X,Y))^2}{\partial X_i} = \frac{\partial(t-cos(X,Y))^2}{\partial (t-cos(X,Y))} \frac{\partial(t-cos(X,Y))}{\partial cos(X,Y)} \frac{\partial cos(X,Y)}{\partial X_i} $$
を求める。
$$ \frac{\partial(t-cos(X,Y))^2}{\partial (t-cos(X,Y))} = 2(t-cos(X,Y))$$
読み込み中...