t_wの輪郭

Feedlyでフォローするボタン
コサイン類似度損失関数の微分損失関数コサイン類似度を目標値に近づけるコサイン類似度を目標値に近づける勾配の微分の計算過程(できてない)あれ

数値微分と結果が一致することを確認できた


コサイン類似度: \( cos(X, Y) = \frac{\sum_{i=1}^{N}(X_i Y_i)}{\sqrt{\sum_{i=1}^{N}(X_i^2)} \sqrt{\sum_{i=1}^{N}(Y_i^2)}} \)

目標とする類似度: \(t\)

コサイン類似度からなる損失関数: \( L(X, Y, t) = (t- cos(X, Y))^2 \)

より

コサイン類似度からなる損失関数を\(X_i\)について偏微分した式

$$ \frac{\partial L(X, Y, t)}{\partial X_i} = \frac{\partial(t-cos(X,Y))^2}{\partial X_i} = \frac{\partial(t-cos(X,Y))^2}{\partial (t-cos(X,Y))} \frac{\partial(t-cos(X,Y))}{\partial cos(X,Y)} \frac{\partial cos(X,Y)}{\partial X_i} $$

を求める。


$$ \frac{\partial(t-cos(X,Y))^2}{\partial (t-cos(X,Y))} = 2(t-cos(X,Y))$$
$$ \frac{\partial(t-cos(X,Y))}{\partial cos(X,Y)} = -1 $$
$$ \frac{\partial cos(X,Y)}{\partial X_i} = \frac{\partial \frac{\sum_{i=1}^{N}(X_i Y_i)}{\sqrt{\sum_{i=1}^{N}(X_i^2)} \sqrt{\sum_{i=1}^{N}(Y_i^2)}}}{\partial X_i} $$
$$ = \frac{\partial (\sum_{i=1}^{N}(X_i Y_i) ({\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}}})}{\partial X_i} $$
$$ = \frac{\partial (\sum_{i=1}^{N}(X_i Y_i))}{\partial X_i} (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} + \sum_{i=1}^{N}(X_i Y_i) \frac{\partial ((\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}})}{\partial X_i} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} $$
$$ = Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} + \sum_{i=1}^{N}(X_i Y_i) \frac{\partial (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}}}{\partial (\sum_{i=1}^{N}(X_i^2))} \frac{\partial (\sum_{i=1}^{N}(X_i^2))}{\partial X_i} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} $$
$$ = Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} + \sum_{i=1}^{N}(X_i Y_i) (-\frac{1}{2} (\sum_{i=1}^{N}(X_i^2))^{-\frac{3}{2}} 2X_i) (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} $$
$$ = Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} - X_i \sum_{i=1}^{N}(X_i Y_i) (\sum_{i=1}^{N}(X_i^2))^{-\frac{3}{2}} (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} $$
$$ = (\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} (Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} - X_i \sum_{i=1}^{N}(X_i Y_i) (\sum_{i=1}^{N}(X_i^2))^{-\frac{3}{2}}) $$

より

$$ \frac{\partial L(X, Y, t)}{\partial X_i} = 2(t-cos(X,Y)) (-1) ((\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} (Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} - X_i \sum_{i=1}^{N}(X_i Y_i) (\sum_{i=1}^{N}(X_i^2))^{-\frac{3}{2}}) $$
$$ = -2(t-cos(X,Y)) ((\sum_{i=1}^{N}(Y_i^2))^{-\frac{1}{2}} (Y_i (\sum_{i=1}^{N}(X_i^2))^{-\frac{1}{2}} - X_i \sum_{i=1}^{N}(X_i Y_i) (\sum_{i=1}^{N}(X_i^2))^{-\frac{3}{2}}) $$
あれ「differential of cosine similarity」でぐぐったら出てきたあれ

あれ

2023/9/6 2:26:00

学習に用いる損失関数はL2ノルムつかっちゃうのが一般的だし、計算が早いし、単純だしなんだけど、なんか痒い。
最終的に出力の評価はコサイン類似度つかうから、コサイン類似度から損失関数作ってぶちこもうぜとなってる。

いまいまは損失関数にL2ノルムつかってみてるけど、ちょっと学習率を強めにすると、パラメーターが発散しちゃってうまく学習できてない。
発散しないようにいい感じ™️の正則化項をもうけてやるのが現実解なんだろうなぁ……

あれ

2023/9/5 22:52:00

デライトの数式表示機能にマジ感謝のガンジャ